

Reg.	No.:	
------	------	--

Name:.....

University of Kerala

First Semester Degree Examination, November 2024 Four Year Under Graduate Programme Discipline Specific Core Course

Mathematics

UK1DSCMAT107 Relation, Functions and Number theory

Academic Level: 100-199

Time:2 Hours Max.Marks:56

Part A.

Answer All Questions Objective Type. 1 Mark Each. (Cognitive Level: Remember/Understand)

6 Marks. Time: 5 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
1.	Give an example of a lattice.	Remember	CO 2
2.	When a relation can be a universal relation.	Remember	CO 1
3.	Give an example of a reflexive relation.	Understand	CO 1
4.	Find the coefficient of highest degree term in the expansion of $(2-3x)^5$.	Understand	CO 3
5.	Find $\sigma(20)$.	Understand	CO 4
6.	Find all equivalence classes in the relation defined on the integers as aRb if and only if $a=b$	Understand	CO 2

Part B.

Answer All Questions Two-Three sentences. 2 Marks Each. (Cognitive Level: Remember/Understand/Apply)

10 Marks. Time: 20 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
7.	Check whether the function $f: R \to R$ defined by	Understand	CO 1
	f(x)=2x-3 is a bijection.		
8.	If $a \lor bc$, with gcd(a, b) = 1, then prove that	Understand	CO 4
	$a \vee c$.		

9.	Write the dual of $A = (B \cap A) \cup (A \cap B)$ where A and	Apply	CO 1
	B are sets.		
	Let $f: R \to R \land g: R \to R$ be defined as	Apply	CO 2
	$f(x)=x^2 \wedge g(x)=2x+3$. Determine fog.		
11.	Find the least upper bound of poset	Apply	CO 3
	([1,2,4,8,16],l) where l means "divisor of".		

Part C.

Answer all 4 questions, choosing among options within each question.
Short Answer. 4 Marks Each.
(Cognitive Level: Remember/Understand/Apply/Analyse)
16 Marks. Time:35 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
	A) If R is the relation on the set of positive integer such that $(a,b) \in R$ if and only if $a+b=3n$ for some integer n, prove that R is an equivalence relations OR B) For the sets A,B,C prove or disprove the statement $A \cap C = B \cap C$ and $A-C=B-C \rightarrow A=B$ with proper justification.	Apply	ČO Í
	A) Check whether the relation R represented by $M_R = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ is an equivalence relation. OR B) Draw the digraph representing the partial ordering $\{(a,b):a b\}$ on the set $\{1,2,3,4,5,6,7,8\}$. Reduce it into the Hasse diagram representing the given partial ordering.	Apply	CO 2
		Apply	CO 3
15.	A) State and prove Wilson's Theorem. OR B) Prove that $1^p+2^p+3^p++(p-1)^p$ is a multiple of p .	Analyse	CO 4

Part D.

Answer all 4 questions, **choosing among options within each question**. Long Answer. 6 Marks Each. (Cognitive Level: Understand/Apply/Analyse/Evaluate/Create) **24 Marks**. Time: 60 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
16.	A) Define Partial ordered set with an example. Draw the Hasse diagram of the relation 'x divides y' on the set A=\{1,2,3,4,6,8,9,12,18,24}	Analyse	CO 1
	OR B) Let (L, \leq) be a lattice. Prove that for any $a, b, c \in L$ (i) $a \land b = b \land a$ (ii) $a \lor (b \lor c) = (a \lor b) \lor c$		
17.		Evaluate	CO 3
	B) Prove that for all $n \ge 1$, 2.6.10.14 $(4n-2) = \frac{(2n)!}{n!}$		
18.	transitive closure of a relation $R=\{1,2\}$, $(2,3)$, $(3,4)$, $(2,1)$ } for the set $A=\{1,2,3,4\}$. OR	Apply	CO 2
	B) If R is the relation on A = $[3,4,5,6]$ Such that $(a,b) \in R$ iff $a-b=even$. Find the rational matrix M_R . find also the rational matrices of R^{-1} , R and R^2 .		
19.	A) Find the remainder when 2^{340} is divided by 341. OR B) Show that $18!+1 \equiv 0 \mod (437)$.	Apply	CO 4